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cause of their extremely low acidity. 
In summary, we have shown that amine elimination is an ef­

fective way to form direct early-late-transition-metal bonds under 
mild conditions. Formation of compounds with several early-late 
metal bonds and the reactivity of the early-late metal complexes 
are now under investigation. 
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Here we report the time resolved behavior of pyrenedecanoic 
acid excimers in spread phospholipid monolayers at the air-water 
interface. It is well established that pyrene excimer formation 
is a diffusion-controlled process2 and prominent use has been made 
of excimer fluorescence to measure the diffusion of this probe 
through various host media, especially those related to biological 
membranes.3 In the present study, interactions of the pyrene-
bearing probe, 1-pyrenedecanoic acid (PDecA), have been com­
pared as functions of probe concentration and hydrocarbon 
structure of the host lipid to the character of the lipid environment. 

A rectangular Teflon Langmuir trough, maintained at 22 0C 
and 90+% relative humidity, was used. Time-resolved mea­
surements were made with a modified PRA (Photochemical 
Research Associates) single photon lifetime apparatus using a PRA 
nitromite laser as the excitation source.4 Excimer behavior was 
monitored at 480 nm. 
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Figure 1. Force-area isotherms for DLP (a), DOP (b), and DSP (c) 
without (I) and then with (II) equimolar PDecA. Horizontal axis, area 
per lipid molecule. 
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Figure 2. Lifetime measurements at the N2-water interface for spread 
monolayers of PDecA in DOP at ratios of (a) 1:1.5 (T = 18 ns) and (b) 
1:3 (T = 33 ns). Excitation was with a 300-ps N2-laser puluse (X = 337 
nm) and emission was monitored at 480 nm. The curve fits provided are 
based on convolution with a single exponential. Attempts to obtain two 
exponential fits were unsatisfactory. Measurements were taken at surface 
pressures of 5 dyn/cm. 

Figure 1 illustrates the force-area isotherms—with and without 
equimolar probe—for monolayers of the three lipid systems ex­
amined: dilinoleoyl-L-phosphatidylcholine (DLP), dioleoyl-L-
phosphatidylchloline (DOP), and distearoyl-L-phosphatidylcholine 
(DSP). The pure lipid data agree well with those reported in the 
literature.5 The probe itself, at these levels, may be seen to force 
an increase of about 10-15% in lipid-lipid intermolecular sepa­
ration under the surface pressures at which lifetime measurements 
were conducted (5 dyn/cm). 

Time-resolved fluorescence measurements of mixed PDecA-
lipid monlayers exhibit two features at 480 nm: a very fast rise 
in excimer intensity and a dependence of the excimer decay on 
PDecA mole fraction in the layer. Figure 2 illustrates these 
features (see caption for details). Plots of apparent decay rate 
vs. mole fraction are given in Figure 3. The lifetime will be subject 
to an error of ±5%. 

An interpretation of this behavior may be made by employing 
the approach of Birks and co-workers, developed to explain 
photophysical behavior of pyrene in concentrated hexane solutions.6 

(5) (a) Van Deenon, L. L. M.; Houtsmuller, U. M. T.; de Haas, G. H.; 
Mulder, E. J. Pharm. Pharmacol. 1962,14, 429. (b) Tancrede, P.; Parent, 
L.; Paquin, P.; LeBlanc, R. M. J. Colloid Interface Sci. 1981, 83, 606-613. 
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Figure 3. Plots of pseudo-first-order apparent excimer decay rates vs. 
mole fraction of PDecA in DSP (S), DOP (O), and DLP (L). Mea­
surements were taken at surface pressures of 5 dyn/cm. 

Here the time course of apparent excimer emission decay at high 
probe concentration may be related to excimer behavior via the 
expression 

\/T = \ = km + kmd + kdm[Py] 

where r is the measured lifetime, km is the rate constant for excited 
monomer emission, kmi is excimer dissociation, and kim is the 
formation rate constant. It follows that 

d \ /d[Py] = kim 

at high concentrations of PDecA. The plots in Figure 3 of X vs. 
[PDecA] provide essentially linear relationships over most of the 
data although some curvature is implied at the lowest concen­
trations used. The intercepts for these plots fall within the region 
reported in Birk's early pyrene-hexane systems where X as C —• 
O is taken to reflect the sum of all rate constants for disappearance 
of excimer. In none of these systems have we been able to suitably 
measure the monomer lifetime (spectral studies have shown that 
the contribution of monomer fluorescence is very small in these 
systems). 

For comparison to other systems, we have applied the simple 
relationship of Sackmann3 (Z)p « ' / 4 d̂m) ar>d utilized areas per 
molecule found in Figure 1. With this relationship and kim in 
cm2 molecule"1 s"1, one arrives at diffusion coefficients of 0.5, 2.4, 
and 2.2 X 10"7 cm2 s"1 for PDecA in DSP, DOP, and DLP, 
respectively. The diffusion constant found here in DSP is com­
parable to that reported by Sackmann for PDecA in di-
palmitoylphosphatidylcholine bilayer and monolayer vesicles (8 
X 10"8 cm2 s"1)7. The values for the DOL system are, as expected, 
somewhat lower than for PDodecA in an oleic acid monolayer 
determined eariler by steady-state methods and application of 
Monte Carlo simulations to the data (lower limit = 9 X 10"7).8 

Although these measurements were conducted at low surface 
pressure, it might be considered somewhat surprising that the DSP 
monolayer exhibited a kdm so comparable with those obtained in 
the other lipids which incorporate cis methylene interrupted double 
bonds. However, photobleaching studies by Tancrede, et al. 
indicate a limited dependence on the nature of the lipid alkyl chains 
alone.9 Additionally, one may not disregard the perturbations 
in the lipid packing generated by the presence of the pyrene (or 
other) probe. While such diffusion constants are not meant to 

(6) Birks, J. B.; Dyson, D. J.; Munro, I. H. Proc. R. Soc. London 1963, 
275, 575-588. 
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(9) (a) Tancrede, P.; Teissie, J.; Tocanne, J. F. Biophys. J. 1984, 45, 336. 
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be taken strictly as a measure of lipid fluidity in a pure lipid 
monolayer, they do demonstrate a rather simple means for 
characterizing interaction of the probe and provide an insight into 
spread monolayer behavior at the molecular level. A compre­
hensive study of temperature, compression, and probe structure 
effects in such systems is in progress. 
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We wish to report the synthesis of a novel class of sweeteners 
based on the "retro-inverso" peptide modification. It has been 
reported that certain L-aspartyl-D-alanine amides I are sweet.1,2 
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Since the routes to reverse the direction of amide bonds in peptide 
backbones are now being developed,3 we utilized this approach 
to prepare the 7V-(L-aspartyl)-l,l-diaminoalkane-based sweeteners 
II.4 In these derivatives, the C-terminal amide bond in the 
structure I has been formalistically reversed. This was accom­
plished with complete maintainance of optical purity at the 
asymmetric center of the diaminoalkane residue. The taste 
characteristics of these molecules are strikingly similar in quality 
to sucrose and depend on the nature of the group R' of the car-
boxylic acid used to acylate the 1,1-diaminoalkane. The properties 
of a small selection of a large number of these compounds which 
have been synthesized and where the nature of the group, R', of 
the terminal amide is varied are summarized in Table I. The 
chirality of the aspartyl residue in these derivatives is L, while the 
chirality of the 1,1-diaminoalkane is R. 

The synthesis of these 1,1-diaminoalkane derivatives is outlined 
in Scheme I. The protected dipeptide III was prepared by using 
standard peptide chemical techniques. The key step in the syn­
thesis of these novel sweeteners, the Hofmann rearrangement of 
compound III, was accomplished by using a mild oxidizing agent 
from the class of iodobenzene compounds, such as [bis(tri-
fluoroacetoxy)iodo]benzene.5 The monoacylated 1,1-diamino­
alkane salt IV was then acylated, under basic conditions, by the 
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